A Probabilistic Fragment-Based Protein Structure Prediction Algorithm

نویسندگان

  • David Simoncini
  • Francois Berenger
  • Rojan Shrestha
  • Kam Y. J. Zhang
چکیده

Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of [Formula: see text] proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold's decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software.html [corrected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study of fragment-based protein structure prediction: biased fragment replacement for searching low-energy conformation.

A novel fragment replacement strategy for the fragment-based protein structure prediction is proposed. Despite the recent advance of de novo prediction of protein tertiary structure, intricate protein topologies still exist at unsatisfactory prediction quality. Although this difficulty is in part due to the accuracy of energy functions, it also relates to the search ability of sampling methods....

متن کامل

A Probabilistic and Continuous Model of Protein Conformational Space for Template-Free Modeling

One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the nativ...

متن کامل

LRFragLib: an effective algorithm to identify fragments for de novo protein structure prediction

Motivation The quality of fragment library determines the efficiency of fragment assembly, an approach that is widely used in most de novo protein-structure prediction algorithms. Conventional fragment libraries are constructed mainly based on the identities of amino acids, sometimes facilitated by predicted information including dihedral angles and secondary structures. However, it remains cha...

متن کامل

A permissive secondary structure-guided superposition tool for clustering of protein fragments toward protein structure prediction via fragment assembly

MOTIVATION Secondary-Structure Guided Superposition tool (SSGS) is a permissive secondary structure-based algorithm for matching of protein structures and in particular their fragments. The algorithm was developed towards protein structure prediction via fragment assembly. RESULTS In a fragment-based structural prediction scheme, a protein sequence is cut into building blocks (BBs). The BBs a...

متن کامل

Bioinformatics prediction and experimental validation of VH antibody fragment interacting with Neisseria meningitidis factor H binding protein

Objective(s): We previously conducted an in silico research on the interactions between the ribosome display-selected single chain variable fragment (scFv) and factor H binding protein (fHbp) of Neisseria meningitidis. We found that heavy chain variable (VH) fragment of this scFv had considerable affinity to fHbp. These results led us to evaluate the ability of this sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012